Timing advance is required because it takes time to burn the air-fuel mixture. Igniting the mixture before the piston reaches top dead center (TDC) will allow the mixture to fully burn soon after the piston reaches TDC. If the air-fuel mixture is ignited at the correct time, maximum pressure in the cylinder will occur sometime after the piston reaches TDC allowing the ignited mixture to push the piston down the cylinder with the greatest force. Ideally, the time at which the mixture should be fully burnt is about 20 degrees ATDC. This will utilize the engine's power producing potential. If the ignition spark occurs at a position that is too advanced relative to piston position, the rapidly expanding air-fuel mixture can actually push against the piston causing detonation and lost power. If the spark occurs too retarded relative to the piston position, maximum cylinder pressure will occur after the piston is already traveling too far down the cylinder. This results in lost power, high emissions, and unburned fuel.
The ignition timing will need to become increasingly advanced (relative to TDC) as the engine speed increases so that the air-fuel mixture has the correct amount of time to fully burn. Another reason for advancing the timing is because as the engine speed increases, fuel consumption increases. Since more fuel is present in the cylinder, the time required to fully burn the air-fuel mixture will be longer. Poor volumetric efficiency at lower engine speeds also requires increased advancement of ignition timing. The correct timing advance for a given engine speed will allow for maximum cylinder pressure to be achieved at the correct crankshaft angular position. When setting the timing for an automobile engine, the factory timing setting can usually be found on a sticker in the engine bay.
No comments:
Post a Comment
Pls put your comment here.
Include your nick pls